Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ
Декан факультета
Факультет машиностроизельных и химических технологий
Саблин П.А.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Физико-химия металлургических процессов»

Направление подготовки	22.03.01 Материаловедение и технологии материалов
Направленность (профиль) образовательной программы	Материаловедение в металлургии
Квалификация выпускника	Бакалавр
Год начала подготовки (по учебному плану)	2020
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.	
3	6	5	

Вид промежуточной атте- стации	Обеспечивающее подразделение
Экзамен	Кафедра «Технология сварочного и металлургического производства»

Разработчик рабочей программы:

Профессор, кандидат технических наук, профессор

Соболев Б.М

СОГЛАСОВАНО:

Заведующий кафедрой

Кафедра «Технология сварочного и металлургического производства»

Мисел Клешнина О.Н.

Заведующий выпускающей кафедрой

Кафедра «Материаловедение и технология новых материалов»

Башков О.В.

1 Введение

Рабочая программа и фонд оценочных средств дисциплины «Физико-химия металлургических процессов» составлены в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Минобрнауки Российской Федерации, и основной профессиональной образовательной программы подготовки «Материаловедение в металлургии» по направлению подготовки «22.03.01 Материаловедение и технологии материалов».

Задачи дисци-плины	Задачи изучения дисциплины состоят в удовлетворении требований к подготовке студентов в области металлургии. изучение равновесных процессов диссоциации элементов в металлургии, а также термодинамику процессов взаимодействия расплавленных металлов и шлаков, основы термодинамики рафинирования, раскисления легирования и модифицирования стали.
Основные разделы / темы дисциплины	 Химическая термодинамика. Химическое равновесие. Растворы. Химическая кинетика. Термодинамические равновесия. Фазовые переходы Поверхностные явления. Плазма в природе технике.

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Физико-химия металлургических процессов» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетен- ции	Индикаторы достижения	Планируемые результа- ты обучения по дисци- плине
	Профессиональные	
ПК-11 способностью применять знания об основных типах современных неорганических и органических материалов, принципах выбора материалов для заданных условий эксплуатации с учетом требований технологичности, экономичности, надежно-	ПК-11.1 Знает сущность, технологию и особенности современных методов обработки конструкционных материалов для изготовления деталей заданной формы и качества; ПК-11.2 Умеет объяснять	- ПС 40.136 ТФ 3.1.1 НЗ- 8 Технологические воз- можности, особенности эксплуатации и эконо- мические характеристи- ки термического обору- дования, реализующего типовые режимы терми-

сти и долговечности, экологиче- ских последствий их применения при проектировании высокотех- нологичных процессов	причины отказов деталей и инструментов в процессе эксплуатации; ПК-11.3 Владеет методами	ческой и химико- термической обработки
	проведения комплексного	
	технико-экономического анализа для обоснованного	
	принятия решений, изыс-	
	кания возможности сокращения цикла работ, содей-	
	ствия подготовке процесса	
	их реализации с обеспечением необходимых техни-	

3 Место дисциплины (модуля) в структуре образовательной программы

ческих данных

Дисциплина «Физико-химия металлургических процессов» изучается на 3 курсе, 6 семестре.

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к базовой части.

Для освоения дисциплины необходимы знания, умения, навыки и / или опыт практической деятельности, сформированные в процессе изучения дисциплин / практик: физической химии, физики, математики «Информационные технологии», «Термическая обработка металлов», «Металлургия черных металлов»

Знания, умения и навыки, сформированные при изучении дисциплины, будут востребованы при изучении последующих дисциплин: «Металлургические технологии» «Основы металлургического производства» «Моделирование и оптимизация металлургических процессов», «Интеллектуальные металлургические процессы», «Преддипломная практика».

Дисциплина «Металлургические технологии» в рамках воспитательной работы направлена на формирование у обучающихся активной гражданской позиции, развивает творчество, профессиональные умения, ответственности за выполнение учебнопроизводственных заданий.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 5 з.е., 180 акад. час. Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

Объем дисциплины	Всего академи-
	ческих часов

Общая трудоемкость дисциплины	180
Контактная аудиторная работа обучающихся с преподавателем (по видам учебных занятий), всего	48
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками)	16
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия)	32
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консультации); взаимодействие в электронной информационно-образовательной среде вуза	96
Промежуточная аттестация обучающихся – Экзамен	36

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

Наименование разделов, тем и содержание материала	Виды учебной работы, включая самостоятельную р боту обучающихся и трудоемкость (в часах)			
	Контакт	Контактная работа преподавателя с обучающимися		
	Лекции	Семинарские (практические занятия)	Лабораторные занятия	
Тема 1: Химическая термодинамика. Закон Гесса. Уравнение Кирхгоффа. Изменение энтропии в различных процессах. Уравнения Гиббса-Гемголца. Химический потенциал.	2	4	2	4
Тема 2: Химическое равнове- сие. Закон действия масс. Уравнение изотермы химиче-	2	2	4	4

ской реакции Вант - Гоффа. Изохора и изобара химической реакции. Тема 3: Фазовые равновесия.	2			4
Основной закон фазового равновесия. Уравнение Клаузиуса - Клайперона и его применение к фазовым равновесиям. Диаграммы состояния одно-двух- и трехкомпонентных систем.				
Тема 4: Растворы. Способы выражения состава раствора. Идеальные растворы. Криоскопия. Эбулмоскопия. Термодинамическая летучесть и активность. Растворение газов в металлах	2	4	4	4
Тема 5: Химическая кинетика. Кинетические уравнения. Зависимость константы скорости химической реакции от температуры. Уравнение Аррениуса. Энергия активации химической реакции.	2	2		4
Тема 6: Термодинамические равновесия. Фазовые переходы. Уравнение термодинамики для неоднородных систем. Фазовые переходы первого и второго рода	2			4
Тема 7: Поверхностные явления. Адсорбционные равновесия в системах газ-твердое тело. Физическая и химическая адсорбция. Теория адсорбции Ленгмюра. Поверхностные натяжение. Явление смачива-	2	4	4	4

ния. Понятие об адгезии и когезии.				
Тема 8: Плазма в природе и технике. Свойства и классификация плазмы. Термодинамические и термические равновесия в плазме	2			4
ИТОГО по дисциплине	«16»	«16»	«16»	«32»

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	32
Подготовка к занятиям семинарского типа	16
Подготовка и оформление «КР»	38
	«86»

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации представлен в Приложении 1.

Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю), практике хранится на кафедре-разработчике в бумажном и электронном виде.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) 8.1 Основная литература

- 1. Физико-химические основы металлургических и машиностроительных производств. Конспект лекций по курсу «Физическая химия» / Сост. Б.М.Соболев Комсомольск-на-Амуре: ФГБОУВПО «КнАГТУ», 2016. 113 с
- 2. Жуховицкий А. А. Физическая химия: учеб. для вузов—4-е изд., перераб. и доп./ А. А.Жуховицкий, Л. А.Шварцман М.: Металлургия, 1987.- 688 с.
- 3. Жуховицкий А. А. Краткий курс физической химии / А. А.Жуховицкий, Л. А.Шварцман М.: Металлургия, 1979.- 368 с.
- 4. Справочник по расчетам равновесий металлургических реакций / Крестовников А. Н. [и др.] М., Металлургиздат, 1963. -258 с.

- 5. Рыжонков Д. И. Теория металлургических процессов: Учебник для вузов /Рыжонков Д. И. Арсентьев П. П., Яковлев В. В. [и др.]— М.: Металлургия. 1989. -392 с
- 6. http://www.knastu.ru/forstudtnts/library/digital-resources.html , сайт внутреннего доступа http://192.168.24.259/
- 7. Соболев Б.М. Термодинамические расчеты в процессах производства стали и ферросплавов. Учеб. пособие / Сост. Б.М.Соболев, А.В. Свиридов Комсомольск-на-Амуре: ГОУВПО «КнАГТУ», 2011. 152 с.
- 8. Соболев, Б. М. Физико-химические основы плавки сталей : учеб. пособие / Б.М. Соболев. Комсомольск-на-Амуре : ГОУВПО «КнАГТУ», 2009. 94 с.

8.2 Дополнительная литература

- 1. Физическая химия./ Под ред. Б.Н. Никольского.-Л.: Химия, 1987.-472 с.
- 2. Физическая химия./ Под ред. К.С. Краснова.-М.: Высш. шк., 1982.-687 с.
- 3. Термодинамика в физической химии./ Под ред. О.М.Полторак.- М.: Высш. шк., 1991г.- 319 с.
- 4. Сборник примеров и задач по физической химии./ Под ред. И.В.Кудряшова., Г.С.Каретникова., М: Высш. шк.,1991г.- 527 стр.

Методические указания к лабораторным работам и КР находятся в личном кабинете.

8.3 Методические указания для студентов по освоению дисциплины

Учебные издания, содержащие материалы для самостоятельного изучения дисциплины: Физико-химические основы металлургических и машиностроительных производств. Конспект лекций по курсу «Физическая химия» / Сост. Б.М.Соболев - Комсомольск-на-Амуре: ФГБОУВПО «КнАГТУ», 2016. — 113 с

Соболев, Б. М. Физико-химические основы плавки сталей : учеб. пособие / Б.М. Соболев. – Комсомольск-на-Амуре : ГОУВПО «КнАГТУ», 2009. – 94 с.

Методические указания к лабораторно-практическим занятиям «Исследование термодинамических характеристик реакций» / Сост. Б.М. Соболев. - Комсомольск-на-Амуре: Комсомольский-на-Амуре госуд. техн. ун.-т, 2015. - 16 с.

Термодинамические расчеты в процессах производства стали и ферросплавов. Учебное пособие к практическим занятиям по курсу «Теория и технология производства стали», «Электрометаллургия и производство ферросплавов» / Сост. Б.М.Соболев, А.В. Свиридов - Комсомольск-на-Амуре: Комсомольский-на-Амуре госуд. техн. ун.-т, 2012. - 131 с.

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Таблица 6 – Перечень оборудования лаборатории

Аудитория	Наименование аудитории (лаборатории)	Используемое оборудование
207-2	Лаборатория материалове- дения	Металлографический микроскоп с цифровой камерой Микро200, микроскоп Nikon MA200
218-2 с выходом в интернет	ВЦ кафедры ТСМП	10 персональных ЭВМ, Intel Core 2 Duo CPU 2.40GHz, 2419МГц, 2 ядра; 1 ГБ RAM; 500ГБ HDD
223-2а с выходом в интернет	Лаборатория металлургиче- ских процессов	3 персональный ЭВМ; 1 экран с проектором 1 электронная доска, стенды для выполнения лабораторных работ

10.2 Технические и электронные средства обучения

Лекционные занятия

Аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебно-наглядные пособия, тематические иллюстрации).

Для реализации дисциплины подготовлены следующие презентации:

- 1. Первый закон термодинамики.
- 2. Второй закон термодинамики.
- 3. Химическое равновесие. Изотерма и изобара Вант-Гоффа.
- 4. Термодинамическая активность.
- 5. Всего 11 презентаций по 30 слайдов в каждой по темам лекций

Практические занятия.

Аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер/ноутбук).

Лабораторные занятия.

Для лабораторных занятий используется аудитория № 223а-2, 207-2 оснащенные необходимым оборудованием.

Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационнообразовательной среде КнАГУ:

- читальный зал НТБ КнАГУ;
- компьютерные классы (ауд. 218 корпус № 2).

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Металлургические технологии»

Направление подготовки	22.03.01 Материаловедение и технологии материалов
Направленность (профиль) образовательной программы	Материаловедение в металлургии
Квалификация выпускника	Бакалавр
Год начала подготовки (по учебному плану)	2020
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
3	6	5

Вид промежуточной атте- стации	Обеспечивающее подразделение	
Экзамен	Кафедра «Технология сварочного и металлургического производства»	

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компе- Ин тенции	ндикаторы достижения	Планируемые результаты обучения по дисциплине			
I	Профессиональные				
зовать в профессиональной деятельности основы проектирования технологических процессов, разработки технологической документации, расчетов и конструирования деталей, в том числе с использованием стандартных программных средств полем менобы полем быль проем быль	С-17.1 Знает методы оектирования техни- ских объектов, систем технологических про- ссов с учетом эконо- ческих, экологиче- их и социальных огра- чений С-17.2 Умеет анализи- вать проектную доку- нтацию технических ьектов, систем и тех- логических процессов четом экономических, ологических и соци- вных ограничений С-17.3 Владеет навы- ми проектирования кнических объектов, стем и технологиче- их процессов с учетом ономических, эколо- ческих, социальных и угих ограничений	ПС 40.136 ТФ 3.1.1 НУ-4 Формулировать предложения по изменению конструктивных требований к эксплуатационным свойствам в целях более эффективной реализации возможностей материалов или термической и химико-термической обработки			

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые	Формируемая	Наименование	
разделы (темы)	компетенция	оценочного	Показатели оценки
дисциплины		средства	
Лекции	ПК11.1	Тесты по основным	60-70% правильных ответов
Тема: 18		темам дисциплины	– зачтено (20 баллов)
Лаб_работы	ПК11.2	Тесты по темам л/р	60-70% правильных ответов
Тема: 16			– зачтено (10баллов)
Практика	ПК11.3	Тесты по основным	60-70% правильных ответов
Тема: 17		темам дисциплины	– зачтено (10 баллов)
«KP»	ПК11.3	Отчет	Оценка (50 баллов)

2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

Наименование оценоч- ного средства	Сроки выпол- нения	Шкала оцени- вания	Критерии оцени- вания	
7 семестр Промежуточная аттестация в форме «Зачет с оценкой»				
Текущий контроль:	в семестре	40 баллов	выполнение зада- ний	
КР	в семестре	50 баллов	выполнение зада- ний	
итого:	в семестре	90 баллов	оценка	

Критерии оценки результатов обучения по дисциплине:

- 0-64 % от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);
- 65 74 % от максимально возможной суммы баллов «удовлетворительно» (пороговый (минимальный) уровень);
- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85 100 % от максимально возможной суммы баллов «отлично» (высокий (максимальный) уровень)

3.1 Задания для текущего контроля успеваемости

Задания лабораторных работ

Лабораторная работа № 1 Определение плотности растворов

Лабораторная работа № 2 Изучение зависимости поверхностных свойств от состава растворов

Лабораторная работа № 3 Изучение фазовых переходов первого рода.

Лабораторная работа № 4. Исследование термодинамических характеристик реакций Методические указания к лабораторным работам приведены в личном кабинете.

Задания для практических работ

Практическая работа № 1. Расчет коэффициентов активности в сложном металлическом

расплаве

Практическая работа № 2. Расчет зависимости энтальпии и энтропии реакции от температуры.

Практическая работа № 3 Определение зависимости константы равновесия реакции от температуры.

Практическая работа № 4 Анализ термодинамических свойств поверхности раздела фаз Методические указания к практическим работам приведены в личном кабинете

Задания на выполнение курсовых работ

1. Исследование термодинамических характеристик реакций окисления в сложном металлическом расплаве стали (марки стали по вариантам).

Задание на курсовую работу выдается студенту на первой неделе учебного семестра. Курсовая работа состоит из пояснительной записки и графической части. Объем курсовой работы: пояснительная записка 20-30 стр., Содержание пояснительной записки: Введение; Литературный и патентный обзор по теме работы; Характеристика стали; реакции окисления примесей стали кислородом и оксидом железа; расчет изобарно-изотермического потенциала всех реакций; определение химического потенциала элементов; оценка порядка окисления примесей в интервале температур $T_{\text{перегрева}}$ - $T_{\text{ликв}}$

Содержание графической части: Графики зависимости химических потенциалов от температуры.

Пример теста по дисциплине

Вопрос № - 1 Систему называют гомогенной если она:

Варианты ответов:

- 1. имеет внутренние поверхности раздела, отделяющие друг от друга части системы различные по своим свойствам;
 - 2. имеет одинаковые физические свойства;
- 3. не имеет внутренние поверхности раздела, отделяющие друг от друга части системы различные по своим свойствам;
 - 4. имеет различные химические свойства.

Вопрос № - 2 Первый закон термодинамики выражается формулой:

Варианты ответов:

- 1. $(d\Delta H/dT)_p = \Delta C_p$;
- 2. $Q_P = \Delta H$;
- 3. $\delta q = du + \delta A$;
- 4. $dS = \delta Q/T$.

Вопрос № - 3 Физический смысл энтропии, это:

Варианты ответов:

- 1. внутренняя энергия системы;
- 2. мера порядка системы;
- 3. способ передачи энергии;
- 4. круговой термодинамический процесс.

Вопрос № - 4 Уравнение Клаузиуса - Клайнерона выражается формулой:

Варианты ответов:

- 1. du=T dS pdV;
- 2 $dlnp=(\Delta H/R)\cdot dT/T^2$;
- 3. dH = T dS + V dp;
- 4. dM = -SdT + vdp.

Вопрос № - 5 Изобара химической реакции $dlnK_{p}/dT = \Delta H/RT^{2}$ отражает зависимость:

Варианты ответов:

- 1. изобарно- изотермического потенциала от теплового эффекта реакции;
- 2. изобарно- изотермического потенциала от теплового эффекта реакции;
- 3. изохорно- изотермического потенциала от давления;
- 4. константы равновесия от давления;
- 5. константы равновесия от температуры.

Вопрос № 6: Внутренняя энергия реального газа включает ...

Варианты ответов:

- 1. только кинетическую и потенциальную энергию взаимодействия частиц;
- 2. энергию деления ядер U^{238} ;
- 3. только внутриядерную энергию;
- 4. кинетическую энергию поступательного, вращательного и колебательного движения частиц, потенциальную энергию взаимодействия частиц, энергию электронных оболочек атомов, внутриядерную энергию

Вопрос № 7: Работа сжатия газа 25 Дж. Изменение внутренней энергии 30 кДж. следовательно, ...

Варианты ответов:

- 1. подводимая теплота равна 29975 Дж;
- 2. подводимая теплота равна 5 Дж;
- 3. подводимая теплота равна 55 Дж;
- 4. подводимая теплота равна 30025 Дж.

Вопрос №8: Идеальными называют:

Варианты ответов:

- 1. Регулярные растворы;
- 2. Совершенные растворы;
- 3. Разбавленные растворы;
- 4. Реальные растворы

Вопрос №9: Интенсивные свойства растворов зависят:

Варианты ответов:

- 1. от количества вещества
- 2. стремятся к выравниванию в различных частях системы
- 3. от состава раствора

Вопрос №10: Химическим потенциалом µ; называют:

Варианты ответов:

- 1. изобарно-изотермический потенциал;
- 2. парциальную мольную свободную энергию;
- 3. парциально мольный свободный объем;
- 4. $Gi = (\partial G'/\partial n_i)P, T, n_i(i \neq j)$.

Вопрос №11: Закон Сивертса является частным выражением закона:

Варианты ответов:

- 1. Рауля, $p_i = p^{\circ}N_i$;
- 2. Генри, $Ci = \epsilon i \ pi$;
- 3. справдлив для двухатомных газов

Вопрос №12: Растворимость водорода и азота в чистом железе при T_{nn} и давлении газов 101,3 кПа

Варианты ответов:

1. Достигает 0,0025% и 0,038% соответственно;

- 2. Достигает 0,0015% и 0,020% соответственно;
- 3. Достигает 0,0005% и 0,0075% соответственно;

Вопрос №13: Понижение точки замерзания раствора описываутся уравнением:

Варианты ответов:

- **1.** $dln N_i = q_{nn}/RT^2$
- **2.** $\Delta T = RT_0^2 N_2/q_{n_1}$
- **3.** $K_9 = (RT_0^2/(1000 \cdot I),$

Вопрос №14: Закон действующих масс для реакции [C] + (FeO) = [Fe] + CO(z) запишется:

Варианты ответов:

- **1.** $K = ([C](FeO))/p_{CO}$;
- **2.** $K = p_{CO}$;
- **3.** $K = p_{CO}/([C](FeO))$

Вопрос №15: Закон распределения формулируется:

Варианты ответов:

- 1. Если вещество растворяется в двух несмешивающихся фазах, то при равновесии оно распределяется между ними в определенном отношении;
- 2. При T=const отношение C_{i} 2 / C_{i} 1= L_{i} ;
- **3.** Закон распределения определяет распределение вещества между разными фазами **Вопрос №16:** При образовании совершенных растворов:

Варианты ответов:

- **1.** $\Delta V=0$ и $\Delta H=0$, $\Delta G=-T\Delta S$;
- 2. $\Delta H \neq 0$, $\mu_i = {}^{\circ}\mu_i + RT \ln N_i$;
- 3. $\Delta H \neq 0$, $\Delta G = -RT ln K$

Вопрос №17: Зависимость коэффициента распределения от температуры выражается уравнением

Варианты ответов:

- **1.** $[H] = k lnp EH^2 / kT (pH^2)^{1/2}$;
- **2.** $dlnL_i/dT = \Delta H/(RT^2)$
- **3.** $\Delta T3 = RT_0^2 N^2/q_{n\pi}$

Вопрос №18: Активность компонента в растворе равна отношению :

Варианты ответов:

- 1.Отношению концентрации его в растворе к парциальному давлению в газовой фазе над раствором;
- 2. Отношению парциального давления в газовой фазе над раствором к его парциальному давлению в стандартном состоянии;
- 3.Отношению парциального давления в газовой фазе над раствором к его парциальному давлению в растворе

Вопрос №19: Химический потенциал компонента в совершенном растворе можно выразить уравнением :

Варианты ответов:

- **1**. $\mu_i = \mu_{icm} + RT \ln a_i$
- 2. $\mu_i = \mu_{icm} + RT \ln \left(p_i / p_{icm} \right)$
- 3. $\mu_i = \mu_{icm} + RT \ln N_i$

Вопрос №20: Химическим потенциалом µІ называют:

Варианты ответов:

- 1. изобарно-изотермический потенциал;
- 2. парциальную мольную свободную энергию;

- 3. парциально мольный свободный объем;
- 4. $G_i = (\partial G'/\partial n_i)P, T, n_i(i \neq j)$.

Вопрос №21: Закон Сивертса является частным выражением закона:

Варианты ответов:

- 1. Рауля, $p_i = p^{\circ}N_i$;
- 2. Генри, $Ci = \epsilon i pi$;
- 3. справдлив для двухатомных газов

Вопрос №22: В реальных растворах отклонения от законов идеальных растворов выражаются

Варианты ответов:

- 1. $a_i = p_i / p_{icm}$;
- 2. $a_i = \gamma i N_i$;
- 3. $a_i = \varepsilon_i p_i$;

Вопрос №23: В разбавленных растворах при отклонениях от закона Генри коэффициент активности равен:

Варианты ответов:

- 1. $f_i=a_i/C_i$;
- 2. $\gamma i = a_i / N_i$
- 3. $\varepsilon_i = a_i/p_i$

Вопрос №24: Параметры взаимодействия первого порядка, выражают:

Варианты ответов:

- 1. Влияние каждого из компонентов на активность выбранного;
- 2. Влияние каждого из компонентов на коэффициент активности выбранного ;
- 3. Влияние всех компонентов на коэффициент активности выбранного

Вопрос №25: Закон распределения формулируется:

Варианты ответов:

- 1. Если вещество растворяется в двух несмешивающихся фазах, то при равновесии оно распределяется между ними в определенном отношении;
- **2.** При T=const отношение C_i , $2 / C_i$, $1=L_i$;
- 3. Закон распределения определяет распределение вещества между разными фазами Вопрос №26: При образовании совершенных растворов:

Варианты ответов:

- **1.** Δ V=0 и Δ H=0, Δ G =- $T\Delta$ S;
- 2. $\Delta H \neq 0$, $\mu i = {}^{\circ}\mu i + RT \ln N i$;
- 3. Δ H≠0, Δ G =-RTlnK

Вопрос №27: Активность компонента в растворе равна отношению :

Варианты ответов:

- 1.Отношению концентрации его в растворе к парциальному давлению в газовой фазе над раствором;
- 2. Отношению парциального давления в газовой фазе над раствором к его парциальному давлению в стандартном состоянии;
- 3.Отношению парциального давления в газовой фазе над раствором к его парциальному давлению в растворе

Вопрос №28: Химический потенциал компонента в совершенном растворе можно выразить уравнением :

Варианты ответов:

- 1. $\mu_i = \mu_{icm} + RT \ln a_i$
- 2. $\mu_i = \mu_{icm} + RT \ln \left(p_i / p_{icm} \right)$

3. $\mu_i = \mu_{icm} + RT \ln N_i$

Вопрос №29: Поверхностное сгущение і-того компонента на k-той границе называется:

Варианты ответов:

- 1. адсорбцией;
- 2. адгезией;
- 3. когезией

Вопрос №30: Адсорбция может быть положительной, если молекулы:

Варианты ответов:

- 1. отталкиваются от поверхности;
- 2. притягиваются к поверхности;
- 3. взаимодействуют с поверхностью

Вопрос №31: Вещество, концентрируемое на поверхности, называется

Варианты ответов:

- 1. поверхностным соединением;
- 2. адсорбатом;
- 3. адсорбентом

Вопрос №32: Адсорбция вызываемая силами взаимодействия между молекулами называется:

Варианты ответов:

- 1. молекулярной адсорбцией;
- 2. хемосорбцией;
- 3. поверхностным натяженим

Вопрос №33: Скорость адсорбции с ростом температуры увеличивается для:

Варианты ответов:

- 1. молекулярной адсорбции;
- 2. хемосорбции;
- 3. поверхностного натяжения.

Вопрос №34: Постоянные b, b_1 в уравнении Лэнгмюра, характеризуюют:

Варианты ответов:

- 1. скоростей адсорбции;
- 2. скоростей десорбции;
- 3. отношение скоростей адсорбции и десорбции

Вопрос №35: Уравнение изотермы адсорбции Лангмюра (для газов) имеет вид :

Варианты ответов:

- 1. $\Gamma = (C/RT)(d\sigma/dC)$;
- 2. $\Gamma = zbC(1/(1+bC));$
- 3. $dx/d\tau = k(a-x)(b-x)$

Вопрос №36: В предельных условиях изотермического обратимого процесса работа адгезии определяется из соотношения:

Варианты ответов:

- 1. $A_{a\partial z} = A_{P,T} \leq \Delta G_{a\partial z}$;
- 2. $A_{a\partial c} = \sigma_{12} + \sigma_{13} \sigma_{23}$
- 3. $\Delta G_{a\partial z} = \sigma_{23} \sigma_{13} \sigma_{12} \leq 0$

Вопрос №37: Если добавление к раствору компонента приводит к повышению поверхностного натяжения, то его адсорбция:

Варианты ответов:

1. отрицательна;

- 2.положительна;
- 3. концентрация вещества в объеме жидкости больше, чем на поверхности

Вопрос №38: Полное смачивание характеризуется работой адгезии:

Варианты ответов:

- 1. $A_{a\partial c} = \sigma_{12}(1 + \cos\theta);$
- $2. A_{\kappa o \varepsilon} = 2 \sigma_{12} = A_{a \partial \varepsilon};$
- $3. A_{a\partial z} = 2\sigma_{12}$

Вопросы к защите лабораторных работ

- 1. Что такое раствор и какова сущность растворения?
- 2. Какие различия между идеальными и реальными растворами?
- 3. В чем отличие моляльности от молярности?
- 4. Каковы причины возникновения поверхностного натяжения растворов?
- 5. Дать выводы, формулы для расчета поверхностного натяжения методом максимального давления в пузырьке газа.
- 6. Какова связь поверхностного натяжения и адсорбции с составом раствора?
- 7. Как влияет вид газа на величину поверхностного натяжения и адсорбцию
- 8. Какие методы используют для определения плотности растворов?
- 9. Определить сущность правила фаз Гиббса.
- 10. Какова зависимость давления насыщенного пара одно и двухкомпонентных систем от различных параметров?
- 11. Каков физический смысл уравнения Клапейрона-Клаузиуса.
- 12. Какова методика определения ΔH_n и ΔS_{ucn} по данным опытов ?
- 13. Описать порядок выполнения работы.
- 14. Дать анализ результатов опытов.

Вопросы к экзамену по курсу

- 1. Основные термины и уравнения для расчета равновесных состояний металлургических процессов.
- 2. Законы идеальных растворов и их применение для анализа металлургических процессов.
- 3. Характеристика взаимодействия элементов при положительном и отрицательного отклонении от закона Рауля.
- 4. Работа адгезии и краевой угол смачивания в металлургических процессах.
- 5. Сущность первого закона термодинамики и его математическое выражение.
- 6. Закон Гесса и его следствия.
- 7. Уравнение Кирхгофа и его применение.
- 8. Сущность второго закона термодинамики и его математическое выражение.
- 9. Термодинамические функции и дифференциальные уравнения.
- 10. Обратимость и равновесие химических реакций.
- 11. Методика расчета равновесий методом абсолютных энтропий.
- 12. Связь константы равновесия с термодинамическими функциями.
- 13. Зависимость констант равновесия от температуры. Вывод уравнения.
- 14. Максимальная работа химической реакции.
- 15. Скорость химической реакции и ее зависимость от концентрации.
- 16. Порядок химической реакции.
- 17. Энергия активации и ее роль в кинетике реакций.

- 18. Кинетика в гетерогенных системах.
- 19. Диффузионная и кинетическая области протекания процессов.
- 20. Параметры взаимодействия и их роль в расчетах активности компонентов в расплавах.
- 21. Химическое сродство элементов и методы их определения в расплавах.
- 22. Кинетика и основные стадии сталеплавильных процессов.
- 23. Энергия активации и влияние температуры на константу скорости химической реакции.
- 24. Роль молекулярной и конвективной диффузии в процессах протекания химических реакций.
- 25. Поверхностно-активны вещества и уравнением адсорбции Гиббса для анализа положительной адсорбции.

Лист регистрации изменений к РПД

№ п/п	Основание внесения изменения	Количество страниц изменения	Подпись разработчика РПД
1			
2			